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ABSTRACT

The optic disc is the region of the retina where the optic nerve exits the back of

the eye. A number of conditions can cause the optic disc to swell. Papilledema, optic

disc swelling caused by raised intracranial pressure (ICP), and nonarteritic anterior

ischemic optic neuropathy (NAION), swelling caused by reduced blood flow to the

back of the eye, are two such conditions. Rapid, accurate diagnosis of the cause of

disc swelling is important, as with papilledema the underlying cause of raised ICP

could potentially be life-threatening and may require immediate intervention.

The current clinical standard for diagnosing and assessing papilledema is a sub-

jective measure based on qualitative inferences drawn from fundus images. Even

with the expert training required to properly perform the assessment, measurements

and results can vary significantly between clinicians. As such, the need for a rapid,

accurate diagnostic tool for optic disc swelling is clear.

Shape analysis of the structures of the retina has emerged as a promising quanti-

tative tool for distinguishing between causes of optic disc swelling. Optic disc swelling

can cause the retinal surfaces to distort, taking on shapes that differ from their nor-

mal arrangement. Recent work has examined how changes in the shape of one of

these surfaces, Bruch’s membrane (BM), varies between different types of optic disc

swelling, containing clinically-relevant information.

The inner limiting membrane (ILM), the most anterior retinal surface and furthest

from BM, can take on shapes that are distinct from the more posterior layers when

the optic disc becomes swollen. These unique shape characteristics have yet to be

explored for their potential clinical utility. This thesis develops new shape models of

the ILM.

The ultimate goal of this work is to develop noninvasive, automated diagnostic

tools for clinical use. To that end, a necessary first step in establishing clinical rele-

vance is demonstrating the utility of retinal shape information in a machine learning
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classifier. Retinal layer shape information and regional volume measurements ac-

quired from spectral-domain optical coherence tomography scans from 78 patients

(39 papilledema, 39 NAION) was used to train random forest classifiers to distin-

guish between cases of papilledema and NAION.

On average, the classifiers were able to correctly distinguish between papilledema

and NAION 85.7± 2.0% of the time, confirming the usefulness of retinal layer shapes

for determining the cause of optic disc swelling. The results of this experiment are

encouraging for future studies that will include more patients and attempt to differ-

entiate between additional causes of optic disc edema.

v
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PUBLIC ABSTRACT

The optic disc is the region of the retina where the optic nerve exits the back of

the eye. A number of conditions can cause the optic disc to swell. Papilledema, optic

disc swelling caused by raised intracranial pressure (ICP), and nonarteritic anterior

ischemic optic neuropathy (NAION), swelling caused by reduced blood flow to the

back of the eye, are two such conditions. Rapid, accurate diagnosis of the cause of

disc swelling is important, as with papilledema the underlying cause of raised ICP

could potentially be life-threatening and may require immediate intervention.

Current clinical methods for determining the cause of optic disc swelling rely

on techniques that are either subjective and vary between clinicians or are invasive

and painful for the patient. A noninvasive, computer-based method for determining

the cause of optic disc edema could save doctors and patients time, minimize patient

discomfort, and provide an objective measure of confidence when deciding on possible

treatments.

Shape analysis of the retinal layers has emerged as a promising quantitative tool

for distinguishing between types of optic disc swelling. Optic disc swelling can cause

the retinal layers to distort, taking on shapes that differ from their normal arrange-

ment. Recent work has examined how changes in the shape of one of these layers,

Bruch’s membrane, varies between different types of optic disc swelling, containing

useful, clinically-relevant information. This thesis introduces new models of a differ-

ent retinal layer, the inner limiting membrane, that has previously been unexplored

for clinically relevant characteristics.

Retinal layer shape information acquired from spectral-domain optical coherence

tomography (SD-OCT) scans from 78 patients (39 papilledema, 39 NAION) was used

to train random forest classifiers to distinguish between papilledema and NAION. On

average, the classifiers were able to correctly identify a patient as having papilledema

or NAION 85.7± 2.0% of the time, confirming the usefulness of retinal layer shapes

for determining the cause of optic disc swelling. The results of this experiment are

vi
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encouraging for future studies that will include more patients and attempt to differ-

entiate between additional causes of optic disc edema.
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CHAPTER 1
INTRODUCTION

The optic disc is the region of the retina where the optic nerve exits the back of

the eye. There are various conditions that can cause the optic disc to swell, referred to

generally as optic disc edema. One type of optic disc edema is papilledema, defined to

be any swelling of the optic disc due to raised intracranial pressure (ICP), a condition

which can be indicative of a serious underlying neurological disorder [2]. Another

type of optic disc edema is nonarteritic ischemic optic neuropathy (NAION), in which

swelling is caused by reduced blood flow to the anterior portion of the optic nerve [3].

Currently, clinicians have limited options for diagnosing optic disc edema. The

most common technique ophthalmologists use for assessing papilledema is the Frisén

scale, a subjective, ordinal measurement based on inferences drawn from fundus im-

ages [4]. Even amongst neuro-ophthalmologists, clinicians with the expert training

required to perform the exam, there can be considerable variation in its results [5].

When a more immediate or definitive diagnosis is needed, clinicians turn to invasive

methods (i.e. lumbar puncture) to measure ICP and/or expensive imaging tests such

as magnetic resonance imaging (MRI) or magnetic resonance venography (MRV) to

check for common causes of raised ICP (e.g. tumor) [6, 7].

The invasive procedures are uncomfortable for the patient, time-intensive for the

physician, and carry the risk of more serious complications [8]. A noninvasive, au-

tomated diagnostic tool could minimize patient discomfort and increase physician

efficiency as well as provide a more robust method for determining the cause of optic

disc swelling. Although not life-threatening, NAION almost always leads to per-

manent vision loss [9]. If raised ICP is the true cause of edema (i.e. papilledema)

and goes unnoticed (or the swelling is incorrectly diagnosed as something other than

papilledema), the patient may be at risk for developing more serious neurological

conditions or even death if the underlying cause of raised ICP is not immediately
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addressed [10]. As determining the true cause of disc edema is necessary for proper

clinical management – and in some cases is highly time-sensitive – it is important to

develop algorithmic techniques for differentiation that are both fast and reliable. The

need for an accurate and rapid diagnosis of optic disc edema is clear.

Retinal layer shape analysis is a relatively new area of research that shows promise

as a quantitative diagnostic tool. The retina is divided into several layers whose shape

can become distorted in the presence of optic disc edema. Recent research has shown

that these changes in shape can in fact be characteristic to the disorder causing

the swelling [11–14]. Shape analysis could potentially provide an extra dimension of

information for clinicians trying to determine the cause of optic disc swelling: while

both papilledema and NAION cause the optic disc to swell and result in larger-

than-normal volumetric measurements, there are differences in retinal layer shape

between the two cases that cannot be accounted for through volume measurements

alone [11,12].

For example, several recent studies have demonstrated that for subjects with

papilledema, when observed through optical coherence tomography (OCT) images,

Bruch’s membrane (BM), the bottommost surface of the retinal pigment epithelium

(RPE), often distorts towards the vitreous in an inverted-U shape [11–14]. Conversely,

while volume measures of the optic disc are also elevated (i.e. the disc is swollen)

with NAION, the shape of BM remains more similar to normal, unswollen optic

discs [11,12,15]. Clearly, shape information can be useful for differentiating between

causes of optic disc edema.

Up to this point, shape analysis has only been performed on BM. In cases of

extreme swelling, the inner limiting membrane (ILM), the retinal structure closest to

vitreous, can distort into shapes distinct from BM and may contain useful information

currently unexplored by researchers and inaccessible to clinicians. For example, with

NAION, ophthalmologists are aware of a particular pattern of regional swelling and
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collapsing of the optic disc that changes over time as the disease progresses [16]. While

BM is likely too posterior to reflect these changes, tracking the ILM shape over time

could potentially allow clinicians to determine how far the disease has progressed.

Furthermore, there may be distortions in the ILM shape in cases of papilledema

that, like the inverted-U observed with BM, may help distinguish the condition from

other types of optic disc edema. To our knowledge, this thesis represents the first

development of shape models of the ILM for use in distinguishing between different

types of optic disc edema.

These novel ILM shape models, along with previously-developed models of BM

and regional volumetric measures, will be used as features in a machine learning

classifier trained to distinguish between causes of optic disc swelling. By training a

classifier on shape information and then checking which features are important to its

performance, it is possible to gain a more quantitative understanding of how different

shapes may be more or less clinically relevant. The demonstration of this classifier is

a necessary first step in the development of automated ophthalmic diagnostic tools.

In summary, the main goal of this work is to develop an automated diagnostic

tool trained on newly-developed shape models of the ILM along with previously-

established BM models and regional volumetric measures capable of reliably distin-

guishing between different causes of optic disc swelling.

1.1 Main contributions

The two main contributions of this thesis are the development of shape models of

the inner limiting membrane and the use of retinal layer shape features in a machine

learning classifier trained to distinguish between two types of optic disc edema.

1.2 Thesis overview

The remainder of this thesis is organized as follows:

• Chapter 2 provides a clinical background on optic disc edema and summarizes
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relevant prior technical work in the field of ophthalmic imaging and analysis.

• Chapter 3 describes the theory and technical methods involved in the imple-

mentation of the inner limiting membrane shape model.

• Chapter 4 describes the theory and implementation of the classifier used to

differentiate between causes of optic disc edema.

• Chapter 5 offers a discussion on the material presented here and describes

potential avenues for future work.
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CHAPTER 2
CLINICAL AND TECHNICAL BACKGROUND

2.1 Clinical background

2.1.1 Terminology

There are several key anatomical terms used throughout this thesis that are listed

for reference here:

• Optic nerve: transmits nerve impulses from the retina to the brain.

• Optic nerve head (ONH): region where the optic nerve exits the back of the eye

• Vitreous: clear gel-filled space separating the eye’s lens and retina

• Retinal pigment epithelium (RPE): outermost (posterior) structure of retina,

comprised of multiple layers of pigmented hexagonal cells. Highlighted in green

in Fig. 2.1 C.

• Bruch’s membrane (BM): lower bounding surface of the RPE, most posterior

layer of the retina.

• Inner limiting membrane (ILM): innermost (anterior) membrane of retina, sep-

arates the retina and vitreous. Highlighted in red in Fig. 2.1 C.

This thesis focuses primarily on the ILM and RPE/BM. It is not uncommon for the

terms RPE and BM to be used interchangeably, although they are not synonymous.

The RPE is comprised of multiple layers, of which BM is the lower bounding surface

(i.e. most posterior). This thesis will primarily refer to BM, only using RPE when

intentionally referring to the multilayer structure. Fig. 2.1 provides an overview of

the layers of the retina.
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Figure 2.1: Layers of the retina. (a) The eye. (b) Diagram of the retinal layer cells.
(c) OCT view of the optic nerve head. Highlighted surfaces are the ILM (red) and
BM (green). (d) Light micrograph of the human retina. (Panels a, b, and d modified
with permission from Daniel Palanker [1].)
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2.1.2 Papilledema

Papilledema is swelling of the optic disc caused by raised intracranial pressure

(ICP) [2]. Because the back of the eye is in a pressure equilibrium with the sub-

arachnoid space [17], as ICP increases, the pressure against the back of the eye also

increases, potentially distorting the optic disc [2, 17].

Any condition causing raised ICP, such as space-occupying lesions (e.g. tumors),

cerebral edema, restricted cerebrospinal fluid (CSF) flow, or increased CSF produc-

tion, can result in papilledema [2, 18]. By definition, papilledema cannot be present

without raised ICP, but a patient may have raised ICP without papilledema. Ad-

ditionally, the cause of raised ICP may be unknown – a condition referred to as

idiopathic intracranial hypertension (IIH). IIH occurs in 1 in 100,000 patients for the

general population, but occurs most often in obese women of child-bearing age, with

a rate of 19.3 per 100,000 [19].

Papilledema typically presents along with other common symptoms of raised ICP

including headaches, nausea, and pulsatile tinnitus [19, 20]. Some amount of vision

loss is seen in 86% of patients, with 10% experiencing severe visual impairment [19].

Two common imaging techniques ophthalmologists employ for observing papilledema

are fundus photography and optical coherence tomography (OCT) imaging. OCT is

described in detail in Section 2.2.1, but for now it is sufficient to understand OCT as

a noninvasive imaging modality that produces high-definition 3D scans of the retina,

enabling clinicians to view details of the retina (e.g. retinal layers) in much greater

detail than with an ophthalmoscope or fundus photograph. Fig. 2.2(b) shows an OCT

image from a papilledema patient with a noticeably swollen optic disc.

As papilledema is a symptom of raised ICP, treatment for papilledema depends

entirely on the underlying cause of increased pressure. In cases of IIH, change of diet

and weight loss combined with a daily diuretic (e.g. acetazolemide) has been shown

to be effective [18, 21]. While most papilledema patients do not experience long-
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Figure 2.2: Comparison of optic disc swelling in papilledema and NAION. Highlighted
surfaces are the ILM (red) and BM (green). Yellow regions highlight the difference in
BM shape between the two types of swelling. A normal subject with a non-swollen
optic disc is shown at left for comparison.

term severe vision loss, those who do may undergo an optic nerve sheath fenestration

surgery to protect the optic nerve from further damage [18]. Cases of raised ICP due

to a space-occupying mass such as a tumor will likely require surgical intervention [18].

As papilledema is a result of increased ICP, a lumbar puncture (i.e. spinal tap) to

measure CSF pressure is the definitive means for diagnosing papilledema and ruling

out other types of optic disc edema [6, 17]. A lumbar CSF opening pressure greater

than 250 mm of water is considered raised ICP and is required for a diagnosis of

IIH [22]. Due to the patient discomfort, length of time, and potential for further

complications associated with lumbar punctures [8], noninvasive techniques for mea-

suring ICP – and more specifically assessing papilledema – are desired. Because of

the potential seriousness of conditions causing raised ICP, it is important to quickly

and reliably diagnose papilledema.

The current standard for assessing papilledema severity is the Frisén scale, an

ordinal measurement based on descriptive features of fundus images [23]. However,
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the method requires expert training (i.e. neuro-ophthalmologist), is limited in its

descriptive ability by the nature of its ordinal scale [24], and can have high variability

between clinicians [4, 5, 25].

These limitations of the Frisén scale combined with a desire for a more robust, ob-

jective method, coinciding with the commercial availability of OCT instruments, has

led to the development of new quantitative methods for the assessment of papilledema

severity. Previous OCT studies have shown thickening of the retinal nerve fiber layer

(RNFL) in patients with papilledema [4,6,26,27]. Additionally, as layer segmentation

techniques have become more capable of handling cases of extreme optic disc swelling,

researchers have been able to show a roughly linear relationship between volumetric

OCT measurements [24] and a modified Frisén scale [4], an encouraging step towards

more objective measurements of papilledema.

2.1.3 Nonarteritic anterior ischemic optic neuropathy

Anterior ischemic optic neuropathy (AION) is neuropathy resulting from reduced

blood flow (i.e. ischemia) to the anterior portion of the optic nerve [3, 28, 29]. Of

the two types of AION – arteritic (AAION) and non-arteritic (NAION) – the non-

arteritic form is most common, accounting for 95% of all reported cases of AION

and is the most common form of acute optic neuropathy for people over the age of

50 [30]. Estimates of incident rates range from approximately 2 to 10 individuals per

100,000 [28,31].

Symptoms of NAION include disc edema and painless vision loss with an onset

of hours to days [29]. While NAION can affect patients of any age, it more often

occurs in patients over the age of 50, with an approximate median age of incidence of

62 years [29,31]. NAION most often presents unilaterally, although in some patients

it does progress to the other eye [32]. Bilateral cases of NAION present the most

difficulty in distinguishing from papilledema. Fig. 2.2(c) shows an OCT image from

an NAION patient with a swollen optic disc.
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As its pathophysiology is still not fully understood, there is no generally agreed

upon treatment for NAION [3]. Current medical therapies include blood thinners

(e.g. aspirin) to address thrombosis and vasodilators [3, 29]. The efficacy of surgical

interventions such as optic nerve decompression is questionable [29]. As summarized

by Atkins et al. in 2009: “NAION remains frustrating for clinicians and often devas-

tating for patients. The pathophysiology remains unclear, and it is uncertain whether

any treatment will be effective for NAION” [29].

2.2 Technical background

2.2.1 Optical coherence tomography

Optical coherence tomography (OCT) is a noninvasive imaging modality devel-

oped by Huang et al. in 1991 [33] that captures high-resolution 3D images of the

back of the eye, enabling clinicians and researchers to view retinal structures that

were previously inaccessible. OCT operates through low-coherence interferometry,

emitting broadband light into the eye and measuring the reflected response [33].

The first implementation of OCT worked in the time domain (TD-OCT) [33]

and was commercially available beginning in 2003. OCT has more recently been

adapted to work in the spectral domain (SD-OCT), allowing for higher resolution

images and faster sampling times [34], becoming commercially available around 2007.

The imaging protocols employed by OCT machines vary by manufacturer. The OCT

images described in this work are all SD-OCT images collected using the Cirrus OCT

device from Carl Zeiss Meditec, Inc. Dublin, CA). Two types of scanning protocols,

volumetric and five-line raster (5LR), were followed for the data described in this

work.

The first, volumetric scanning, takes 200 slices, each with a dimension of 200×1024

pixels to produce a 3D image of the time spanning a physical volume of (6 mm × 6 mm

× 2 mm). The second protocol, high-definition five-line raster (HD-5LR), samples

only five higher-resolution slices to produce a 2D image of the eye. Fig. 2.3 details
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Figure 2.3: Orientation and dimensions of SD-OCT images. (a) Diagram of the eye
with approximate scan region highlighted (modified with permission from Palanker
[1]). (b) A 3D image compiled from multiple OCT image slices. (c) Two 2D perpen-
dicular scans, oriented in 3D space from a patient with papilledema.
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the orientation of OCT scans in relation to the back of the eye (a) and details the

slice arrangement in a typical volumetric scanning protocol (b, c).

2.2.2 Graph-based segmentation of retinal layers

The main contribution of this thesis (shape analysis of the ILM) is made possible

through graph-based segmentation of the retinal layers. The segmentation methods

employed in this thesis originated with Li et al.’s development of a fully 3D, optimal

surface segmentation technique in 2006 [35]. Their work was then adapted by Garvin

et al. in 2009 to optimally segment retinal layers in 3D OCT scans [36]. The technique

was adapted by Lee et al. in 2010 to include a multiresolution approach that increased

efficiency [37]. In 2012, Wang et al. adapted the technique to handle images of swollen

optic discs by designing cost images specific to scans of papilledema [24]. The group

further developed their methods in 2013 to calculate regional volume information [25].

The bottom panels of Fig. 2.2 show examples of segmentations of the ILM (red) and

BM (green).

2.2.3 Shape analysis

Accurate segmentation of retinal layers has made possible the quantitative analy-

sis of retinal layer shapes, an area of study which in recent years has shown to be useful

for differentiating causes of optic disc swelling [11–15]. The shape analysis techniques

used in this thesis are derived from methods originally developed by Cootes et al. in

1995 called Active Shape Models (ASMs) [38]. The ASM technique derives a statis-

tical model of class-specific (e.g. faces, hands, etc.) shapes from images containing

manually-labeled examples from that class. The statistical shape model is then used

to develop an understanding of typical modes of variation seen within that class of

objects. For example, the first mode of variation of a statistical shape model trained

on faces may reflect the scale of the mouth, whereas the second mode may represent

the angle of the eyebrows [39]. Full details on the theory and implementation of shape
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models will be given in Chapter 3.

Some of the first work to examine the effects of papilledema and elevated ICP

on retinal structure [11] and shape [12] using high-resolution SD-OCT images was

published in 2011. Both studies employed a fully manual process and focused on the

angulation of BM. Both studies showed that BM bowed in towards vitreous in cases of

raised ICP (i.e. papilledema) and remained angled posteriorly in NAION and normal

cases [11, 12]. The yellow ovals in the bottom images of Fig. 2.2 (b)-(c) highlight

the difference in BM shape between papilledema and NAION patients. Fig. 2.2 (a)

displays a normal patient scan without any swelling of the optic disc.

Addressing the limitations of a fully manual process and building on these first two

studies, in 2015 our group developed a semi-automatic approach that makes possible

the analysis of large data sets whose size would otherwise be prohibitive to work

with [13]. Examples of shape variations of BM extracted from papilledema images

using this semi-automatic approach are shown in Fig. 2.4. The second principal

component demonstrates angulation of BM towards (-) and away from (+) vitreous,

one of the key findings of retinal layer shape analysis to date [11–13].

More recently, retinal layer shape analysis was applied to data from the Idiopathic

Intracranial Hypertension Treatment Trial (IIHTT), a longitudinal study of IIH [20],

and used to quantify the affects of medical treatment for IIH on layer shapes over time

[14]. Retinal layer shape has also been shown to correlate with ICP and change within

an hour after lumbar puncture [40], providing further evidence for the relationship

between ICP and retinal shapes.

2.2.4 Random forest classifier

The ultimate goal of this thesis is to use retinal layer shape information to distin-

guish between causes of optic disc edema. Given the limited amount of data available

in this work, a random forest classifier was selected in order to minimize overfitting.

Additionally, random forests provide an intuitive measure of feature importance, a
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Figure 2.4: Example of variations in shape of BM. The second principal component
(PC) demonstrates a bending of BM towards (-) and away from (+) vitreous. The
-3 and +3 correspond to weightings of the eigenvectors added to the mean shape
(middle row), the details of which are explained in Chapter 3. Indicated directions
are temporal (T) and nasal (N).

desirable trait when evaluating the utility of retinal layer shapes for clinical rele-

vance. The full details of the random forest classifiers used in this work will be given

in Chapter 4.

The use of random forests in ophthalmic image analysis is well-established. The

technique has been used to generate cost images for layer segmentation [41], pre-

dict optic nerve head (ONH) volume from fundus photographs [42], and estimate

papilledema severity using retinal regional volumes and layer shapes [43]. This thesis

demonstrates one of the first [44] uses of retinal layer shapes as features in a classifier

for determining the cause of optic disc swelling.
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CHAPTER 3
SHAPE ANALYSIS OF THE INNER LIMITING MEMBRANE

This chapter provides a detailed mathematical explanation of shape models, de-

scribes the implementation of shape models of the inner limiting membrane (ILM),

and details the characteristics of the trained ILM models. The novel contribution of

this thesis is the application of shape analysis to the ILM. Prior to this work, retinal

shape models had only ever been built from the retinal pigment epithelium/Bruch’s

membrane (RPE/BM) [12–14], the posterior-most portion of the retina. The ILM is

the retinal structure closest to vitreous, and in cases of optic disc swelling, can distort

into shapes different from the more posterior layers, which if analyzed, may provide

currently unused clinical information.

3.1 Active shape model theory

The goal of shape analysis is to create a statistical model that is capable of de-

scribing the typical variations in shape seen across a training set of images for a single

class of objects. For example, the shape models trained on retinal layers reflect the

ways in which the layers bend and contort throughout various stages of swelling.

The process of creating a shape model can be split into three main components:

assigning landmarks to objects in images, aligning shapes with Procrustes analysis,

and reducing the dimensionality of the aligned shapes using principal component

analysis (PCA). The notation in this section follows the original work of Cootes et

al. [38].

3.1.1 Assigning landmarks

Shape analysis starts with either manual or automatic labeling of objects within

a training set of images using user-defined landmark points. Landmarks are typically

selected as key points that are common across objects of the same class. For example,

in a training set of faces, landmark points would be assigned along the eyes, nose, lips,
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etc. In retinal layer shape analysis, landmarks are placed along the retinal surface.

Shapes are represented as a sequence of these landmark points. In 2D, a given

shape, qi, is represented as a column vector consisting of (x, y) pairs for each of the

n landmark points:

qi = (xi0, yi0, xi1, yi1, . . . , xin−1, yin−1)T (3.1)

where qi is the ith shape in a training set of N images. The math for 3D shapes is

essentially the same, adding a z value where appropriate.

3.1.2 Aligning shapes

After each shape in the training set of images is labeled with n landmarks, the

shapes must be aligned to ensure consistency across points when creating the statisti-

cal model described in Section 3.1.3. The typical method used for shape alignment is

Procrustes analysis. Procrustes analysis is an iterative technique that typically uses

translation, rotation, and scaling to minimize the sum of squared error of the distance

between landmark points shared across a set of shapes [38]. Procrustes analysis can

also be performed without all three of the transformations (e.g. leaving out scaling,

as was done in this thesis).

Procrustes analysis essentially removes differences in translation, rotation, and

scaling (referred to as “pose parameters”) from images in the training set, aligning

each shape to the group’s mean shape. By removing the pose parameters (which are

linear in the image space) from the training shapes before calculating the statistical

shape model, the eventual model is able to more effectively represent changes in the

object’s shape, which, in the image space, are typically nonlinear.
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3.1.3 Creating the statistical shape model

The third and final step in the process of creating a shape model is to use PCA to

reduce the dimensionality from 2n-dimensional shape space to a t-dimensional model

space, where t ≤ 2n and is determined by the number of principal components (PCs)

used in the final shape model. In practice, t is chosen to be just large enough to

accurately approximate the original shapes and is typically much less than 2n [38].

As PCA is a standard statistical technique for which numerous resources are readily

available [45, 46], the technique will be described here only in brief, focusing on its

relevance to shape models.

PCA identifies the dimensions of most variation in a dataset, which, in shape

analysis, correspond to variations in shape that are shared between images in the

training data. Returning to the example of face shapes from before, PCA may identify

the angle of the eyebrows or length of the ears as variations in shape shared across the

training images [39]. Or, as is seen in shape analysis of the retina, shape variations

can correspond to the angle of the retinal layers or width of the Bruch’s membrane

opening.

PCA begins with calculating the mean shape, x̄, of all N aligned shapes, xi . . .xN :

x̄ =
1

N

N∑
i=1

xi. (3.2)

The 2n× 2n covariance matrix, S, is calculated as

S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T . (3.3)

When plotted in shape space, where each landmark is an axis, the training shapes

are assumed to form a Gaussian hyperellipsoid. The eigenvectors of the covariance

matrix (i.e. PCs), pk, correspond to the major axes of this distribution. The PCs are
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calculated as

Spk = λkpk (3.4)

where λk is the kth eigenvalue of S, k ranges from 1 to 2n, and λk ≥ λk+1.

3.1.4 Representing new shapes

After calculating the statistical shape model, new shapes can be represented as

weighted linear combinations of the mean shape with the first t PCs:

x = x̄ + Pb (3.5)

where P is comprised of the first t eigenvectors

P = (p1,p2, . . .pt)

and b is a vector of t weights

b = (b1, b2, . . . , bt)
T (3.6)

specific to each new shape.

To ensure that shapes remain within a reasonable range of deformation, each

weight is constrained to a range of values determined by the corresponding PC’s

eigenvalue:

−3
√
λk ≤ bk ≤ 3

√
λk. (3.7)

These shape weight coefficients typically range from about −3 to 3, as most shapes

within a training set will be contained within three standard deviations of the mean.
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Once the shape model has been trained, new shapes can be represented as weighted

linear combinations of the model’s PCs. The model weights for a new shape qi can

be determined by rearranging Eq. 3.5:

bi = PT (xi − x̄) (3.8)

where PT = P−1, since the columns of P are orthonormal. Finding the model weights

for a new shape is equivalent to projecting the shape from the image space into the

shape model space defined by P.

3.2 Implementation of the inner limiting
membrane and Bruch’s membrane shape

models

This section describes the implementation of statistical shape models of the ILM

and BM following the theory presented in the previous section. In general, the meth-

ods described here closely follow the techniques described in [13, 14] for the semi-

automatic construction of BM shape models, adapted for the ILM. A brief overview

of the shape model construction process is provided here.

Eight shape models were produced as part of this work, six of which were devel-

oped for the first time for this thesis. Three of the models consisted of landmarks

assigned solely to the ILM, three were constructed from landmarks on BM, and the

remaining two were combination models of both ILM and BM landmarks. Fig. 3.1

provides an overview of the models trained for this work.

Shape models are generally constructed in either two or three dimensions. Of the

shape models in this work, six were 2D and two were 3D. The 2D models consisted of

landmarks assigned to slices oriented in either the temporal/nasal or superior/inferior

direction (Fig. 3.2b). The 3D models were comprised of landmarks in a radial ar-

rangement spanning the entire retinal surface (Fig. 3.2a).

Two of the BM models described above were previously established elsewhere.
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Figure 3.1: Overview of the shape models created for this thesis. The three ILM
models, the superior/inferior BM model, and the ILM+BM models are unique to
this thesis. Orientation of model indicated in red (temporal/nasal) and green (su-
perior/inferior). Mean shape shown in black. Transparent regions indicated one
standard deviation in shape. Gray dots indicate landmarks from each shape. All
models were built from the 116 IIHTT baseline OD scans.



www.manaraa.com

21

The 2D BM model in the temporal/nasal orientation is the original retinal shape

model [12], adapted for volumetric scans in 2016 [47]. The 3D BM model was recreated

from [48].

Figure 3.2: Construction flowchart for the ILM (i) and BM (ii) shape models. (a)
Landmarks arranged in 3D on the retinal surface. (b) Landmarks isolated to the tem-
poral/nasal (red) and superior/inferior (green) orientations. (c) Landmarks placed
on central slices from an example SD-OCT volume. (ii) White arrows indicate BMO
points (d) Layer shapes from all 116 subjects. Mean shape shown in black. Shaded
areas depict one standard deviation.

3.2.1 Data acquisition: SD-OCT images

The data used to create the shape models in this work were drawn from the

Idiopathic Intracranial Hypertension Treatment Trial (IIHTT), a multi-site, double-

blinded trial to study the effectiveness of medical treatment for IIH [49]. HD-5LR

and volumetric OCT scans were collected from 116 patients in the IIHTT as part of

the OCT substudy [20].
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All eight of the shape models were constructed from landmarks placed on volu-

metric SD-OCT scans. However, the segmentation process involved manually placing

two points on an HD-5LR scan and transferring those points to the subject’s volu-

metric scan, as will be described in Section 3.2.2. Each of the 116 scans were of the

patients’ right eyes, centered on the optic nerve head (ONH), and performed at their

first clinical visit (i.e. baseline). The volumetric OCT scans had a scan dimension of

200× 200× 1024 voxels, corresponding to a physical dimension of 6× 6× 2 mm3 [20]

(Fig. 2.3). The HD-5LR scans consisted of five high-resolution slices (1024 × 1024

pixels, 9 × 2 mm3) spaced at 0.25 mm intervals across the eye, of which the central

(i.e. 3rd) scan was used.

3.2.2 Segmentation

Both the HD-5LR and volumetric OCT scans were segmented using the graph-

based techniques described in Section 2.2.2. The segmentation approach used here

was a multistage process that began with a segmentation of the retinal nerve fiber

layer (RNFL) and the RPE complex using a graph-algorithmic approach [36]. A mul-

tiresolution approach [35] was employed such that rough details were first segmented

at low resolution and a finer level of detail was achieved at each higher resolution.

After the retinal layers were segmented, the Bruch’s membrane opening (BMO)

center was estimated using the semi-automatic approach presented in [50] and de-

scribed here in brief. The GNU Image Manipulation Program (GIMP, version 2.8.10)

was used to manually place two landmarks at the BMO points on the BM surface

in the central B-scan of each of the 116 HD-5LR scans. The BMO points were then

automatically transferred from the 5LR to the volumetric OCT scans by registering

the two images together using an intensity-based registration. The BMO points are

indicated with white arrows in Fig. 3.2cii. The BMO center was defined as the halfway

point between the two manually-assigned landmarks in the central 5LR scan. The

manually-labeled BMO points were then set as very low cost points in the radially-
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unwrapped en-face projection image in order to aid the segmentation of the BMO.

If an HD-5LR scan was not available for a subject, the BMO points were estimated

from and placed directly on the volumetric SD-OCT image.

Variations in the image acquisition procedure can on occasion result in a tilting

of the retinal image in the XY plane. To address this tilting, a standard procedure

in OCT image processing to shift the vertical columns (A-scans) was followed so that

the end points of BM both sat at a pre-assigned Z-value.

3.2.3 Landmark placement

Whether a model depicts the ILM or BM, both cases begin with the segmentation

of an SD-OCT volumetric image as described in the previous section. In a basic

sense, landmark placement is the process of deciding which points from the 200×200

surface produced from the segmentation will be included in the shape model. The 3D

shape models consisted of landmark points placed in a radial arrangement spanning

the entire retinal surface (Fig. 3.2a). The 2D models were built from landmarks

placed only on the central temporal/nasal or superior/inferior slices of the surface

(Fig. 3.2b). The next four subsections explain the landmark assignment in detail for

each type of model.

3.2.3.1 Landmark placement for 3D models

The landmarks for the 3D BM model were assigned following the procedure de-

scribed in [48]. 36 segments of eight landmarks were assigned to the BM surface in

a radial arrangement, spaced evenly every 10◦ (Fig. 3.2aii). The first landmark in

each segment was placed on the segmented BMO contour (Section 3.2.2) and the

remaining seven landmarks were spaced evenly in the outward radial direction, not

measuring distance along the retinal surface, spanning a total distance of 1.5 mm. A

total of 288 landmarks were assigned to the BM surface for the 3D model.

A similar procedure was followed for the ILM. The 3D ILM model included 432
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total landmarks, consisting of 36 radial segments separated by 10◦ each comprised of

12 landmarks. The 36 segments formed a circle centered at the BMO center point

(Fig. 3.2ai). The 12 landmarks of each segment spanned a distance of 2.5 mm and

were spaced evenly in the radial direction, not measuring distance along the retinal

surface.

3.2.3.2 Landmark placement for 2D ILM models

The temporal/nasal and superior/inferior 2D ILM models consisted of 25 land-

marks spanning 6 mm, centered on the BMO center point (Fig. 3.2bi). The landmarks

were spaced evenly in the X (temporal/nasal) or Y (superior/inferior) orientation, as

opposed to measuring distance along the retinal surface.

For some subjects (typically due to the 200× 200 image not being perfectly cen-

tered on the ONH) the set of 25 landmarks would not fit within the width of the

6 mm scan. The approach of [47] was adapted to handle these cases; a thin plate

spline was used to extend the ILM by 50 pixels (1.5 mm) at the temporal/nasal and

superior/inferior edges to accommodate the landmarks.

3.2.3.3 Landmark placement for 2D BM models

The temporal/nasal and superior/inferior BM models were both extracted from

the full 3D model of BM. The 2D temporal/nasal model consisted of the 16 landmarks

from the 1st and 19th radial segments of the 3D BM model, and the superior/inferior

model used the 16 from the 10th and 28th segments (Fig. 3.2bii).

3.2.3.4 Landmark placement for 2D ILM+BM models

The ILM+BM combination models were created by concatenating the 25 land-

marks from the ILM and 16 landmarks from the BM into a single shape vector. The

landmarks for the ILM and BM were assigned as described in the previous two sec-

tions, and then the vector containing the BM landmarks was concatenated onto the
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end of the ILM vector.

3.2.4 Shape alignment and statistical model
calculation

The same shape alignment procedure was followed for each of the eight shape

models. The landmarks for each scan were translated so that the BMO center point

was at the center of the 200× 200 surface, i.e. shifted to (100, 100) in the XY plane.

As described in Section 3.2.2, the segmentation procedure for the volumetric OCT

scans included a rotation adjustment to account for tilting of the retina. Therefore,

it was not necessary to rotate the shapes after landmarks were placed. No changes in

scaling were applied to the layer shapes. As the translation and rotation were taken

care of through different means and no scaling adjustments were needed, Procrustes

analysis was not performed on the retinal layer shapes. The statistical shape models

were calculated using PCA implemented in MATLAB (r2014a).

3.3 Results: shape model variations

Six of the eight shape models described in the previous section are unique to this

thesis. Five of the models included landmarks placed on the ILM, and the sixth was a

previously undeveloped 2D model of BM, oriented in the superior/inferior direction.

The results of the shape model implementations described in Section 3.2 are presented

here in terms of the variations of their PCs.

Figs. 3.3 - 3.8 all follow the same format: columns correspond to the model’s PCs,

sorted in order of decreasing energy; rows display the shape variations corresponding

to positive and negative sums of the PC; The middle row of each figure displays the

model’s mean shape. The individual and cumulative energy contributions of each PC

are shown at the bottom of each column. Following Eq. 3.5, the shape variations

(rows) in each figure are produced by adding or subtracting integer multiples (1− 3)

of the PCs, P, to the mean shape, x̄.
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The rows of each column display shape variations three standard deviations from

the mean shape (determined by Eq. 3.7). The first four PCs are shown for the 2D

shape models. Fig. 3.5 shows the shape variations corresponding to the first three

PCs of the 3D ILM model. Many of the shape variations are too complex for intuitive

description. A textual description of each PC for each model would ultimately be

of limited use. As such, only PCs with clear physical interpretations or utility as

features in the classifier covered in Chapter 4’s are described here. The reader is

encouraged to examine the PC variations in each figure for themselves.

The first PC of the 2D ILM temporal/nasal model (Fig. 3.3) reflects a bulging of

the ILM towards (-) and away from (+) vitreous while displaying a slightly asymmetry

in the nasal direction. The second, third, and fourth PCs each represent the presence

or absence and location of smaller bulges in the center of the surface. The first PC of

the 2D ILM superior/inferior model (Fig. 3.4) also demonstrates a distortion of the

surface towards and away from vitreous while maintaining the two central bulges.

The first PC of the 3D ILM model (Fig. 3.5) largely reflects the presence or absence

of swelling of the optic disc. The second PC demonstrates a more central swelling (-)

and dimpling (+) that appears to more heavily affect the temporal/inferior quadrant.

The third PC demonstrates an asymmetry in the temporal/nasal directions.

The first PC of the 2D temporal/nasal ILM+BM model (Fig. 3.7) clearly reflects

an asymmetry in the swelling of the ILM in the temporal/nasal orientation. Addition-

ally, the first PC demonstrates an angulation of BM towards (-) and away from (+)

vitreous, the common result of [11–13]. The third PC of the same model shows the

same angulation of BM along with a clear asymmetry in the temporal/nasal direction.

The first PC of the 2D superior/inferior ILM+BM model (Fig. 3.8) reflects a

general increase (-) and decrease (+) in swelling of the ILM while maintaining two

bulges. The second PC maintains a consistent ILM height while shifting between one

(-) and two (+) bulges in the surface.
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Figure 3.3: Principal component variations of the 2D ILM temporal (T)/nasal (N)
shape model. Center landmark indicated in black. Shape coefficient weights shown at
left. Rows demonstrate the effect of adding and subtracting PCs to the mean shape.
Individual and cumulative energy of each PC shown at bottom.



www.manaraa.com

28

Figure 3.4: Principal component variations of the 2D ILM superior (S)/inferior (I)
shape model. Center landmark indicated in black. Shape coefficient weights shown at
left. Rows demonstrate the effect of adding and subtracting PCs to the mean shape.
Individual and cumulative energy of each PC shown at bottom.
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Figure 3.5: Principal component variations of the 3D ILM shape model. Highlighted
segments are temporal/nasal (red) and superior/inferior (green). Shape coefficient
weights shown at left. Rows demonstrate the effect of adding and subtracting PCs
to the mean shape. Individual and cumulative energy of each PC shown at bottom.
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Figure 3.6: Principal component variations of the 2D BM superior (S)/inferior (I)
shape model. Center landmark indicated in black. Shape coefficient weights shown
at left. Rows demonstrate the effect of adding and subtracting PCs to the mean
shape. Individual and cumulative energy of each PC shown at bottom.
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Figure 3.7: Principal component variations of the 2D ILM+BM temporal (T)/inferior
(I) shape model. Center ILM landmark indicated in black. Shape coefficient weights
shown at left. Rows demonstrate the effect of adding and subtracting PCs to the
mean shape. Individual and cumulative energy of each PC shown at bottom.
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Figure 3.8: Principal component variations of the 2D ILM+BM superior (S)/inferior
(I) shape model. Center ILM landmark indicated in black. Shape coefficient weights
shown at left. Rows demonstrate the effect of adding and subtracting PCs to the
mean shape. Individual and cumulative energy of each PC shown at bottom.
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3.4 Discussion

The previous section describes the PC variations of six new retinal shape models.

There is a clear difficulty in describing the shape variations of these models. The

second PC of the original BM model could be adequately explained as angulation

towards or away from the vitreous, but the shape variations of the ILM models

are much more complex. The ILM+BM model, for example, is comprised of 41

landmarks and represents simultaneous variations in the ILM and BM structures.

The 3D ILM model consists of 432 landmarks and its PCs represent simultaneous

changes in swelling across all directions.

There are no theoretical constraints on the models that suggest they will produce

shape variations with intuitive interpretations. As the shape models grow in com-

plexity, it will be important to develop more systematic methods for describing their

behavior. One option for a more quantitative evaluation of the relevance of the PCs

of each model is explored in Chapter 4, where the shape model weights are used as

features in random forest classifiers. If variations in shape can be described quanti-

tatively in terms of their role in a classifier, it may make the descriptions of models’

traits more manageable.

The ILM presents unique challenges for shape analysis that were not present

with the original models of the RPE/BM. Unlike the BM, which has two physical

landmarks consistent across all subjects (the BMO points), the ILM does not include

physical landmark features that provide continuity from subject to subject. Shape

analysis assumes some amount of physical continuity between the landmarks from

different training samples.

Whereas the BM surface mostly varies in its angulation towards or away from

vitreous and maintains its general shape, the ILM in a papilledema subject with

extreme swelling will take on a vastly different shape from an NAION subject with

minimal swelling. This greater complexity in shape of the ILM is reflected in the
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energy contributions of each PC; the first PC of the 2D ILM temporal/nasal model

contributes 79% of the total energy (Fig. 3.3) whereas the first PC of the original BM

model accounted for approximately 90% [13].

This wide variation in shape of the ILM was addressed in part by assigning land-

marks evenly in the horizontal plane, rather than measuring distance along the retinal

surface as was done with the original BM models. Placing landmarks evenly along

the ILM surface could potentially reflect the shapes of individual scans more accu-

rately, but landmark placement would vary widely between scans depending on the

curvature of the ILM.

An additional challenge when constructing shape models from volumetric SD-

OCT scans of swollen optic discs is precisely locating the center of the BMO. This

uncertainty in the BMO location further increases the physical landmark inconsisten-

cies described above. Our lab is currently developing automatic methods for more

accurately segmenting the BMO contour.

Another potential limitation of this study – that will be addressed at length in

Chapter 5 – is using a shape model training dataset consisting entirely of subjects

with papilledema. While the 116 papilledema scans used to train the shape models

show a wide variety of swelling, it’s possible that the shape models are biased by their

training data and may more accurately represent papilledema shapes than NAION.
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CHAPTER 4
DIFFERENTIATING BETWEEN CAUSES OF OPTIC DISC EDEMA

The ultimate goal of this work is to develop a noninvasive, semi-automated diag-

nostic tool for differentiating between papilledema and NAION, two types of optic disc

edema. Current clinical techniques for diagnosing swelling of the optic disc require

expert training and rely on subjective inferences drawn from fundus photographs.

A rapid, accurate diagnosis of the type of swelling is essential, as in cases of pa-

pilledema, the underlying cause of raised ICP may require immediate intervention.

An algorithmic, objective technique for diagnosing optic disc edema could save doc-

tors and patients time while providing a more robust metric. This chapter describes

the training and evaluation of random forest classifiers as progress towards that goal.

Retinal layer shape has emerged as a metric that is useful for differentiating be-

tween types of optic disc edema [11, 12]. Shape information is particularly useful for

differentiation in cases where the optic disc is not severely swollen and the optic disc

volume measurement could be found in cases of both NAION or papilledema [12].

While retinal layer shape (in particular the angulation of BM) has been shown to

differ between types of optic disc edema, a necessary step towards clinical relevance

is demonstrating the utility of layer shapes in the context of a machine learning

classifier.

The random forest classifiers described in this chapter were trained on 78 volu-

metric SD-OCT scans of papilledema and NAION patients collected at the University

of Iowa. Retinal layer shapes were the primary features extracted from the SD-OCT

scans. Regional measures of the optic disc volume were also calculated from the scans

and used as additional features.

This chapter first describes the theory behind random forest classifiers, then de-

tails the specific implementation of a classifier trained on retinal layer shapes derived

from volumetric SD-OCT images. Finally, the results of the classifier are presented
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along with a brief discussion of the work.

4.1 Random forest theory

Random forest classifiers are an ensemble learning method built from decision

trees. Decision trees often follow the Classification and Regression Tree (CART)

framework, and, as the name implies, can be used for either classification or regression

tasks [51]. This thesis focuses solely on binary classification trees and will use the

general term decision trees to refer specifically to binary classification trees. Random

forests, along with other improvements which will be detailed in Section 4.1.2, combine

the outputs of many decision tree models in order to produce an output that is both

more accurate and less sensitive to noise than traditional decision trees.

4.1.1 Decision trees

Decision trees operate with a simple objective of partitioning a dataset into two

categories using a sequence of binary “Yes” or “No” splits. Decision trees achieve this

objective by sequentially identifying features on which to split the data into subsets

that are more homogeneous than the current subset. For example, when diagnosing

a fever, a decision tree may classify a patient as having or not having a fever by

answering a series of Yes or No questions, such as “is the temperature greater than

100F?”, “are the palms sweaty?”, etc, and arriving at a classification of having or

not having a fever. The process of training a decision tree determines which Yes or

No questions to ask (i.e. which features to split on) and at what values to set each

Yes/No threshold.

There are a few parameters to select while training the binary tree: which features

do we split on? How do we determine the threshold for splitting? When do we stop

splitting the data (i.e. stop adding nodes to the tree)? The first two questions can

be addressed through the use of an impurity metric.

Impurity can be thought of as a measure of the heterogeneity of dataset; a set
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of data with an equal distribution of two classes would be highly impure. The Gini

impurity index, I(t), is a common measure of impurity in random forests [52–54]:

I(t) =
M∑
m=1

P (ωm|t)(1− P (ωm|t)) (4.1)

where P (ωm|t) is the probability of finding a point, ωm, from class m in a subset Xt

and M is the total number of classes. Xt is the current set of points at node t, before

the data are split into two purer subsets. The probability is approximated as

P (ωm|t) =
Nm
t

Nt

,m = 1, 2, . . . ,M

where Nm
t is the number of points from class m in a potential new subset XtY and

Nt is the total number of points in Xt.

The Gini impurity is maximal when P (ωm|t) is uniform. Decision trees identify

the optimal feature and threshold at each split by iterating through each of the

features, testing different threshold values, and picking the combination of feature

and threshold that results in the biggest decrease in I(t). By minimizing the Gini

impurity, decision trees identify subsets of the data that will be maximally pure.

The third question, determining when to stop splitting the data, is typically ad-

dressed through a heuristic approach known as pruning [53]. It is difficult to stop

training a tree at precisely the right point; stopping early would result in poor classi-

fication results and stopping too late may result in overfitting. One common practice

is to allow the tree to grow to a large size – potentially overfitting to the data – and

then removing nodes to balance prediction error and model complexity [53].

Decision trees provide a number of advantages over other standard classification

techniques. If a tree remains small, its results are easily interpretable. Decision trees

can be adapted for regression or classification. And in general, decision trees are

computationally simple and quick to fit.
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However, there are also a number of substantial disadvantages associated with

decision trees. Compared to support vector machines and other ensemble techniques,

decision trees have low accuracy and are highly sensitive to small changes in their

training data [53]. Additionally, decision trees are only able to split data parallel to

the feature axes and are forced to approximate diagonal lines as many horizontal and

vertical splits [52]. Random forests improve substantially on both of the issues of

accuracy and instability while making justifiable concessions in interpretability of the

model.

4.1.2 Improvements of random forests over classical
decision trees

Random forests were introduced in 2001 by Breiman to address a number of

shortcomings associated with traditional decision trees, such as low accuracy and

high sensitivity to variations in training data [55]. Random forests use a bootstrapped

ensemble of decision trees along with a random sampling of features during training

to achieve good accuracy while remaining robust to noise [55]. Random forests are

now widely used in a variety of disciplines and generally applicable to a number of

problems [56,57].

Bagging (bootstrap aggregating) refers to the practice of training multiple trees

on random subsets (with replacement) of the training data with the intent of reducing

variance in the final model [58]. The final output of the ensemble of classifiers is then

typically determined through an averaging or winner-takes-all vote of the output of

each tree [53].

Traditional bagging trains trees on distributions that are identically distributed

but not necessarily independent. The variance of N identically distributed random

variables with variance σ is ρσ2 + 1−ρ
N
σ2, whereas the variance of an average of N

independent identically distributed random variables is 1
N
σ2 [56]. Random forests

attempt to achieve the smaller predictor variance by producing trees that are inde-
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pendent as well as identically distributed. This is achieved by randomly selecting a

subset of features at each split of the data (i.e. tree node).

As the trees comprising a random forest are trained using bagging, which selects

a random subset of data for each tree, it is possible to identify samples that were not

included in the training of a given tree. These samples are referred to as out-of-bag

(OOB) and can be treated like an internal test set to evaluate the model [56]. The

OOB error estimate is the mean prediction error of a sample xi calculated from the

trees which did not include xi in their subset of training data [55,56].

Random forests (and decision trees is general) lend themselves to straightforward

calculation of feature importance. A common approach for calculating feature im-

portance in random forests is to simply rank features based on their total reduction

in the Gini impurity at each split node accumulated across each of the trees used to

build the forest [56]. It is common practice to normalize the importance of all features

to range from 0 to 1 or 0 to 100 [54].

4.2 Implementation

The random forest classifiers in this work were trained on 78 volume-matched SD-

OCT scans (39 Papilledema, 39 NAION) collected from subjects with papilledema

and NAION at the University of Iowa, the details of which will be described in

Section 4.2.1. The goal of the classifiers was to determine as accurately as possible

whether a given scan was from a patient with papilledema or NAION. To address the

limited amount of available data, 100 random forest classifiers were trained, each using

leave-one-out cross-validation, and their accuracies were averaged together. Each

random forest consisted of 50 trees trained on random subsets of log2N features,

where N = 76. The classifiers were implemented in Python using the scikit-learn

library [54] on a 64-bit Windows 7 PC with 32 GB of RAM and an Intel Xeon 3.60 GHz

E5-1630 CPU. Fig. 4.1 outlines the classifier training and evaluation procedure.

The random forest classifiers were trained on a combination of retinal layer shapes
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Figure 4.1: Overview of the random forest model training and evaluation procedure.

and regional volume measurements, both of which were derived from volumetric SD-

OCT scans. The classifiers were initially trained and evaluated on all 76 shape and

regional volume features, details of which are given in Section 4.2.3. Then, after

calculating the feature importance for each classifier, a new set of 100 classifiers

were trained and evaluated on only the top 15 most important features. Feature

importance was calculated using the Gini impurity metric as described in Section 4.1.1

and averaged across all classifiers. The classifiers were evaluated and are presented
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here in terms of average accuracy and confusion tables.

4.2.1 Scan selection

The SD-OCT scans collected at the University of Iowa consisted of 61 subjects

with papilledema and 60 subjects with NAION. All of the papilledema subjects had

both HD-5LR and volumetric scans available. Of the 60 NAION subjects, 12 had both

types of scan available. For the subjects with only volumetric scans available, the

BMO points for segmentation were placed directly on central slices from volumetric

scan as described in Section 3.2.2.

A number of the papilledema and NAION subjects had to be excluded from the

analysis for a variety of reasons: scans without both the ILM and BM visible were

excluded; the segmentation had to correctly identify BM and the ILM; each scan

was required to have a matching scan from the opposite class with a difference in

total optic disc volume below a certain threshold (Section 4.2.2). Additionally, it was

desired to have an equal number of papilledema and NAION subjects in the dataset.

Therefore, the total number of available scans for each class was 39, determined by

the number of papilledema subjects available.

4.2.2 Volume matching

Volume of the optic disc is typically measured as the total volume contained

between the ILM and BM surfaces, which can be computed after segmenting a vol-

umetric OCT image. As was previously established in Chapter 2, it’s possible for

OCT scans from two different types of optic disc edema, (e.g. one papilledema and

the other NAION), to have equal volume measurements while having different shape

characteristics.

Clinically, the volume of the optic disc is a useful feature for distinguishing between

papilledema and NAION, as the distributions of volume seen between the two causes

of swelling differ. However, the tails of the distributions do overlap, and it is in these
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cases where volume is no longer as useful for determining the cause of swelling. This

thesis aims to focus on these “hard” cases and does not use total volume as a feature

for differentiation. It is for this reason, to control for differences in total disc volume

when evaluating the efficacy of layer shapes for differentiation, that the data were

comprised of volume-matched papilledema and NAION pairs. In other words, unlike

in the general population where the distributions are fairly separate, the distributions

of total optic disc volume for the NAION and papilledema subjects used to train and

evaluate the classifiers overlap.

A greedy algorithm was used to match papilledema and NAION scans, starting

with the lowest volume NAION scan and moving in order to the highest volume scan.

If a papilledema scan whose total volume differed from the NAION scan by less than

0.5 mm3, the scan was left out of the analysis. Fig. 4.2 demonstrates the overlap in

distributions of total optic disc volume for the two classes.

Figure 4.2: Distributions of total optic disc volume for 78 NAION and papilledema
scans. The highlighted SD-OCT scans demonstrate the difference in retinal layer
shape between scans with some of the most and least swollen optic discs. Orange
bars indicate medians. Boxes extend to lower and upper quartiles of data.
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4.2.3 Feature extraction

Of the 76 features used to train the classifiers, 72 of them were shape coefficients

derived using the shape analysis techniques described in Chapter 3: 8 features from

the 2D temporal/nasal ILM model, 8 from the 2D superior/inferior ILM model, 20

from the 3D ILM model, 4 from the 2D temporal/nasal BM model, 4 from the 2D

superior/inferior model, 8 from the 3D BM model, and 10 from both ILM+BM mod-

els.

From a machine learning perspective, the purpose of Chapter 3 can be thought

of as feature design for use in the random forest classifiers. After the 78 scans were

segmented and labeled with landmarks as described in Section 3.2.3 of Chapter 3, the

layer shapes were transferred from image space to shape model space using Eq. 3.8,

reproduced here for reference:

bi = PT (qi − x̄)

where bi is a column vector of length t, the number of principal components used in

the reconstruction, and qi is the vector of landmarks (i.e. shape) for scan i.

The remaining four features were the normalized regional volumes within the

peripapillary circle, shown in Fig. 4.3. The regional volumes were calculated using

the volumetric segmentation technique described in [25]. Each scan’s total volume was

computed as the volume contained between the ILM and BM surfaces. The regional

volumes were then computed as quadrants evenly spaced in a circle surrounding the

BMO center point (Fig. 4.3). The regional volumes for each subject were normalized

based on the scan’s total volume.

4.3 Classifier results

When trained on all 76 features, the random forest classifiers determined the

correct diagnosis with an average accuracy of 85.1±2.2%. After retraining on only the
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Figure 4.3: Depiction of the temporal, superior, nasal, and inferior regions from which
the regional volume features were computed. BMO center indicated in red.

top 15 most important features, the average accuracy increased to 85.7± 2.0%. Fig.

4.4(a) shows the importance of each of the 76 features used to train the random forest

classifiers. Fig. 4.4(b) shows all features, sorted in order of decreasing importance.

Fig. 4.5 illustrates the characteristics of the four most important features across

the 100 classifiers. In order of decreasing importance, the top four features were the

third PC of the 2D ILM+BM TN model, first PC of the 2D BM TN model, first PC

of the 3D BM model, and the first PC of the 2D BM SI model. All of the four most

important features were drawn from either a BM model or an ILM+BM model (Fig.

4.4(a)).

Fig. 4.6 provides a more detailed view of the discriminating ability of the top 15

features. A wider separation between the NAION and papilledema values in the box

plots corresponds to a greater ability of that feature to separate the two classes.

The confusion table for the classifiers trained on the top 15 most important fea-

tures is shown in Fig. 4.7. The total number of predictions was 7800: 100 classifiers×

78 predictions
classifier

. The table also includes percentage values, indicating the percent of total

predictions a single category (i.e. NAION classified as NAION, NAION classified as

papilledema, etc.) accounts for.
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Figure 4.4: Importance of the 76 features used to train the random forest classi-
fiers, scaled to percentage of the most important feature. (a) All features, organized
by feature type. (b) All features, sorted in order of decreasing importance. Ab-
breviated feature names listed beneath each column. TN = temporal/nasal; SI =
superior/inferior.
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Figure 4.5: Four most important features across all classifiers. (a) Third PC of the
2D ILM+BM TN model. (b) First PC of the 2D BM TN model. (c) First PC of the
3D BM model. (d) First PC of the 2D BM SI model. Mean shape indicated by 0,
standard deviations from the mean shape indicated by −3 and +3.
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Figure 4.6: Discriminating ability of the six most important features. Further sep-
aration between boxes indicates greater discriminating ability. Orange bars indicate
medians. Boxes extend to lower and upper quartiles of data.
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Figure 4.7: Confusion table for the classifiers trained on the top 15 most important
features. The integer values sum to the total number of predictions across all 100
classifiers. Parenthetical terms sum to 100% for each row, indicating the percentage
of predictions within a true class.
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4.4 Discussion

While working with a relatively small dataset, it was important to avoid overfit-

ting. As such, the potential parameter space to explore for fine-tuning the classifiers

(e.g. number of trees, bagging size, random feature selection) was kept small. Ran-

dom forests were chosen in part for their tendency towards minimal overfitting [55,56].

A larger dataset would of course allow for further exploration while reducing the risk

of overfitting.

As expected based on previous work [11, 13, 59], angulation of BM towards and

away from vitreous was one of the most useful features for differentiating between

types of optic disc edema. The BM angulation is represented in some form in each

of the first three most important features. One area to explore more in the future

is further refinement of the classifier features in order to reduce redundancy in the

feature space. For example, performing PCA on the feature space would likely iden-

tify combinations of features that all represent the same general shape trends (e.g.

identifying multiple shape models each reflecting angulation of BM). This reduced

feature space could then be used to train a new classifier.

It is also important to point out the role ILM shape plays in the most important

feature. This feature suggests that asymmetry of the ILM surface in the tempo-

ral/nasal direction is useful for differentiating between NAION and papilledema, an

insight that could not have been drawn from models of BM alone. If ILM shape were

not useful for differentiation, the classifier would have likely preferred any number of

the features from BM models that only showed angulation of BM.

It is worth noting which scans were most misclassified. A cursory examination of

the misclassified scans reinforces the importance of the BM angulation. The scans that

were most often misclassified were papilledema subjects whose BM angulation was

directed away from vitreous, a shape characteristic that is more common in normal

or NAION subjects. As more data are added to the study, it will be interesting to
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see what additional systematic trends in misclassification may arise.

The confusion table in Fig. 4.7 shows that NAION subjects were slightly more

likely to be misclassified (15.9% error) than scans from papilledema subjects (12.6%

error). However, more data are required to draw any strong conclusions about a bias

towards classifying one condition over the other.
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CHAPTER 5
DISCUSSION AND FUTURE WORK

5.1 Discussion and future work

The two key contributions of this thesis are the development of shape models of the

inner limiting membrane (ILM) and the use of ILM and retinal pigment epithelium

(RPE) shapes in a random forest classifier trained to distinguish between two causes

of optic disc edema: papilledema and nonarteritic anterior ischemic optic neuropathy

(NAION).

Along with a conference abstract published in 2018 [60], this thesis includes the

first development of shape models of the ILM and the use of retinal shape information

as features in a machine learning classifier trained to distinguish between types of optic

disc edema. The temporal dynamics of ILM shape remain uninvestigated. Clinical

evidence suggests cases of NAION may present with an asymmetry of the optic disc

in the superior/inferior orientation [7] that changes over time and which shape models

of the ILM may be able to help study.

A clear limitation of this work is the limited amount of data available for the

training and evaluation of the random forest classifiers. The risk of overfitting on

the small dataset limited the amount of hyperparameter tuning (e.g. number of trees

and number of random features) that could be done with the classifiers. Additionally,

with testing limited to repeated leave-one-out cross validation, it is difficult to predict

how the accuracy of the classifiers may change when evaluated on a larger test set of

data.

One potential means for increasing the data available for training and evaluating

the classifiers is currently under development. As described in Section 4.2.1, a number

of the SD-OCT scans collected from NAION subjects at the University of Iowa were

improperly segmented due to the extreme swelling of the ILM (Section 4.2.1). The

graph-based segmentation approaches don’t always follow the steep curves sometimes
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present in images of extreme optic disc edema. Gradient vector flow fields have pre-

viously been combined with graph-based techniques to segment the steep curvature

present in SD-OCT images from glaucoma patients that can sometimes cause tradi-

tional graph algorithmic approaches to fail [41]. These techniques are currently being

adapted for cases of disc edema and could make additional NAION scans available in

future work.

Another potential limitation of this study is the baseline data used to train the

preliminary shape models (which were later used to generate the shape features for

the classifier). The shape models were trained using the baseline scans of the right

eyes of 116 patients from the Idiopathic Intracranial Hypertension Treatment Trial

(IIHTT), i.e. trained only on patients with papilledema. It is possible that this model

doesn’t reflect all of the potential shape variations seen with NAION.

However, the baseline scans from the IIHTT cover a wide range of degrees of

swelling, many of which fall in the same range of swelling as typically seen in patients

with NAION. Additionally, preliminary examinations using model error – the ability

of the shape model to accurately represent both the NAION and papilledema – as a

feature in the classifiers did not provide further discriminating ability, an indication

that the model does recreate papilledema shapes any better (or worse) than shapes

from NAION patients. The ideal shape model training set would include numerous

examples from papilledema and NAION subjects along with normal scans.

Envisioning automated diagnostics at use in an actual clinical setting, it would

likely be useful to adopt more of a Bayesian perspective when considering the problem

of diagnosing optic disc edema. Incorporating the incidence rates (i.e. priors) for

NAION and papilledema along with other relevant clinical information (e.g. sex, age,

weight, visual acuity) could certainly improve the performance of the classifier.

This work has clear applications to the field of telemedicine. Expert clinicians

already of course incorporate their prior knowledge when diagnosing patients, but an
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algorithmic system which has the relevant priors built-in could provide physicians who

do not have the necessary extensive training in neuro-ophthalmology a useful – and

potentially time-critical in cases of papilledema – point of reference when diagnosing

patients.

5.2 Conclusions

The two main contributions of this thesis are the development of shape models of

the inner limiting membrane (ILM) and the use of retinal layer shapes in a machine

learning classifier. The theory and implementation of retinal layer shape models was

described in Chapter 3. The training and evaluation of random forest classifiers for di-

agnosing papilledema and NAION from retinal shape features was covered in Chapter

4. The most important feature for differentiating between NAION and papilledema

was drawn from a combination shape model of both the ILM and BM surfaces. The

asymmetry of the ILM displayed in this feature has not previously been reported in

the context of retinal layer shape models.

As more meaningful shape features are developed and more data are used to train

and evaluate the classifiers, the estimates of classification accuracy and robustness

will improve, continuing towards the ultimate goal of developing reliable and accurate

noninvasive tools for diagnosing optic disc edema.
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